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Abstract. The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and 

drive most of the temporal variations in the growth rate of atmospheric CO2 (Le Quéré 2014). Understanding the 10 

environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the 

CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual 

variability (IAV) of carbon Net Ecosystem Exchange (NEE) have been analysed using three different data-streams: 

ecosystem level observations from the FLUXNET database (La Thuille and 2015 releases), the MPI-MTE bottom-up 

product resulting from the global up-scaling of site-level fluxes, and the Jena CarboScope Inversion, a top-down estimate of 15 

surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and 

discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated 

between the three data sources. The global average of IAV at FLUXNET sites (~120 gC m
-2 

y
-1

), quantified as the standard 

deviation of annual NEE, was observed to peak in arid ecosystems and to be almost six times larger than the values 

calculated from the two global products (15 and 20 gC m
-2 

y
-1 

for MPI-MTE and Jena inversion, respectively). The two data-20 

driven global products show that most of the temporal variability observed in the last three decades is due to yearly 

anomalies, whereas the temporal trends explain only about 15% of the variability in the MPI-MTE product and 20% in the 

Jena Inversion product. Both at site level and at global scale, the IAV of NEE is driven by the gross primary productivity and 

in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad 

view on the magnitude, spatial patterns and environmental drivers of IAV from a variety of data sources, that can be 25 

instrumental to improve our understanding of the terrestrial carbon budget and to validate the predictions of land surface 

models. 

1 Introduction 

Atmospheric CO2 concentration has been constantly increasing since the Industrial Revolution, and has caused a 

corresponding rise of 0.85 °C in the global air temperature from 1880 to 2012 (IPCC, 2013). Since the 1960s, terrestrial 30 

ecosystems have acted as a considerable sink for atmospheric CO2, reabsorbing about one quarter of anthropogenic 

emissions (Friedlingstein et al., 2010; Le Quéré et al., 2014). The growth rate of atmospheric CO2 concentration is 

characterized by a large inter-annual variability (IAV), which mostly results from the variability of the CO2 net ecosystem 

exchange (NEE) on land (Bousquet et al., 2000; Le Quere et al., 2009; Yuan et al., 2009). Multisite synthesis confirms that a 

large inter-annual variability in NEE is a common feature at all flux sites around the world (Baldocchi, 2008; Baldocchi et 35 

al., 2001). The reason why the IAV is so large is that NEE results from the small imbalance between two larger fluxes: the 

photosynthetic uptake of CO2 (Gross Primary Production, GPP) and the respiratory release of CO2 (Total Ecosystem 

Respiration, TER). As a consequence, even minor variation in either of the two fluxes can cause large variations in their 

difference.  
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It has been long debated which of GPP or TER controls the spatial and temporal variability of NEE. Several studies have 40 

ascribed inter-annual variability in NEE to variability in either GPP (Ahlstrom et al., 2015; Janssens et al., 2001; Jung et al., 

2011, 2017; Stoy et al., 2009; Urbanski et al., 2007) or TER (Morgenstern et al., 2004; Valentini et al., 2000) or both (Ma et 

al., 2007; Wohlfahrt et al., 2008b). GPP and TER show comparable ranges of IAV, typically larger in absolute terms than 

that observed for NEE due to the temporal correlation between the two gross fluxes (Richardson et al., 2007). Given that 

photosynthesis and respiration may respond differently to environmental drivers (Luyssaert et al., 2007; Polley et al., 2008), 45 

the interpretation of climate impacts on the variability of NEE requires the understanding of the relation between the IAV of 

NEE and that of GPP and TER (Polley et al., 2010). 

The environmental factors driving the IAV of NEE  (IAVNEE) include: climate, physiology, phenology, natural and 

anthropogenic disturbances (Marcolla et al., 2011; Richardson et al., 2007; Shao et al., 2015). Understanding the spatio-

temporal variability of NEE and its controlling mechanisms is essential to assess the vulnerability of the terrestrial carbon 50 

budget, to evaluate the land mitigation potentials  and to quantify the ecosystem capacity to store carbon under future 

climatic conditions (Heimann and Reichstein, 2008). Besides, quantifying inter-annual variability in NEE is a prerequisite 

for detecting longer-term trends or step changes in flux magnitude in response to climatic or anthropogenic influences and 

identifying its drivers (Cox et al., 2000; Lombardozzi et al., 2014).  

The temporal dynamic of NEE has been addressed in numerous studies, based on either „„top-down‟‟ approaches, which 55 

primarily focuses on aircraft atmospheric budgets (Leuning et al., 2004), tower based boundary layer observations (Bakwin 

et al., 2004) and tracer transport inversion (Baker et al., 2006; Gurney et al., 2002; Rödenbeck et al., 2003), or on „„bottom-

up‟‟ methods  that rely on data-driven gridded products derived from the up-scaling of flux data (Jung et al., 2011, 2017; 

Papale et al., 2015; Papale and Valentini, 2003) or process-based biogeochemical models that simulate regional carbon 

budgets (Desai et al., 2008, 2007; Mahadevan et al., 2008).  60 

Despite the broad literature on the subject, very few examples of IAV analysis based on multiple data streams are available 

in the literature (Desai et al., 2010; Pacala, 2001; Poulter et al., 2014). In the present study patterns and controls of the inter-

annual variability of NEE have been analysed using three different data streams: ecosystem level data from the FLUXNET 

database, the MPI-MTE bottom-up product resulting from the statistical up-scaling of in-situ flux data (Jung et al., 2009) and 

the Jena CarboScope Inversion top-down product, which estimates land (and ocean) fluxes from atmospheric CO2 65 

concentration measurements and atmospheric transport modelling (Rödenbeck et al., 2003).  In particular, this analysis aims 

to: i) assess the magnitude and the spatial pattern of IAV of NEE (IAVNEE), ii) identify the role of photosynthesis and 

respiration as sources of IAVNEE and iii) investigate the role of key climatic variables like temperature and precipitation in 

driving the spatial pattern of IAV. Finally, the consistencies and discrepancies among the different data products are 

analysed and critically evaluated. 70 

2 Materials and Methods 

2.1 Datasets 

Data at ecosystem scale were retrieved from two releases of the FLUXNET dataset, namely LaThuile and 2015. These 

datasets contain half-hourly data of carbon dioxide, water vapour and energy fluxes that are harmonized, standardized and 

gap-filled. Time series of NEE and of the component fluxes GPP and TER, together with air temperature and precipitation, 75 

were used in the present analysis. Flux data have the advantage to represent direct observations of in-situ IAV, however at 

most sites the time series are still too short for a proper analysis of the temporal variability of NEE (Shao et al., 2015). For 

this reason only sites with a minimum of five years of observations and an open data distribution policy were selected. A 

subset of 89 sites satisfied the two criteria, among which 27 evergreen needle-leaf forests (ENF), 5 Evergreen Broadleaf 

Forests (EBF), 12 deciduous broad-leaf forests (DBF), 6 mixed forests (MF), 12 grasslands (GRA), 8 croplands (CRO), 6 80 
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sites counting closed and open shrublands (CSH, OSH), 7 wetlands (WET) and 6 sites counting savannas and woody 

savannas (SAV, WSA).  

At global scale, two sources of gridded data were used: a "bottom-up" data product, namely the MPI-MTE product (Jung et 

al., 2009) and, as "top-down" product, the Jena CarboScope CO2 Inversion (Rödenbeck et al., 2003). The MPI-MTE dataset 

is built with a machine learning technique (model tree ensemble, MTE) to upscale in space and time the flux observations 85 

from the global network of eddy covariance sites (FLUXNET) integrated with climate and remote sensing data for the time 

period 1982-2011 (Jung et al., 2009). Effects of land management, land use change and CO2 fertilization are not represented 

in this product. Global maps for GPP and TER at 0.5° spatial resolution and monthly temporal resolution were used, while 

NEE fields were calculated as difference between the gross fluxes. To derive surface fluxes, the Jena CarboScope Inversion 

combines modelled atmospheric transport with high-precision measurements of atmospheric CO2 concentrations. 90 

Atmospheric transport is simulated by a global three-dimensional transport model driven by meteorological data. For 

consistency with the MPI-MTE product, monthly averaged NEE land fluxes from the s81_v3.6 version of the product were 

used here, at a spatial resolution of 5° x 3.75°. The Jena Inversion is particularly suited for the analysis of temporal trends 

and variability since it is based on a temporally constant observation network (14 atmospheric stations for the version 

s81_v3.6).  95 

As the inversion estimates the total land flux, it includes CO2 emissions from fires in addition to NEE, being calculated as 

the difference between the total surface flux and prescribed anthropogenic emissions. For improving the consistency of the 

two datasets, we therefore subtracted fire emissions from the inversion estimates using an harmonized combination of the 

products RETRO (Schultz et al., 2008) for the period 1982-1996 and GFED4 (Van Der Werf et al., 2010) for the period 

1997-2013. RETRO is a global gridded data sets (at 0.5° spatial resolution) for anthropogenic and vegetation fire emissions 100 

of several trace gases, covering the period from 1960 to 2000 with monthly time resolution. GFED4 combines satellite 

information on fire activity and vegetation productivity to estimate gridded monthly fire emissions at a spatial resolution of 

0.25 degrees since 1997. RETRO and GFED4 were harmonized using the overlapping years (1997-2000) to calculate 

calibration coefficients as the ratio of GFED4 to RETRO for latitudinal bands of 30°. The RETRO time series was then 

multiplied by these coefficients and the resulting time series of fire emissions was finally subtracted from the land flux of the 105 

Jena Inversion. It is worth noting that the remaining flux from the inversion is the sum of land use change emissions and 

NEE while the MPI-MTE does not account for the land use change flux. 

In order to analyse the role of climatic drivers on the inter-annual variability, global maps of temperature and precipitation 

were used. Gridded Air temperatures were obtained from the Climatic Research Unit (CRU) at the University of East Anglia 

at monthly time scale and 0.5°x0.5° spatial resolution, based on an archive of monthly mean temperatures provided by more 110 

than 4000 weather stations (Jones et al., 2012). Precipitation fields were obtained from the GPCC product at 0.5° and 

monthly time step (Schneider et al., 2014) . This product is based on a large dataset of monthly precipitation from more than 

85,000 stations and is provided by NOAA/ESRL PSD (Boulder, Colorado, USA). The MODIS MCD12C1 land cover 

product (Friedl and Brodley, 1997) was used to classify the land pixels and to calculate statistics by plant functional type. 

MCD12C1 provides the dominant land cover types at a spatial resolution of 0.05° using a supervised classification algorithm 115 

that is calibrated using a database of land cover training sites. 

2.2 IAV Analysis 

The inter-annual variability of NEE was estimated as the standard deviation of annual values computed on time windows of 

12 months shifted with a monthly time step (Shao et al., 2015; Yuan et al., 2009) and calculated with the same methodology 

for the three data-streams used in the analysis. Average values of IAV for plant functional type (PFT) were determined using 120 

the PFT classification of FLUXNET sites and the MCD12C1 product (aggregated at the appropriate spatial resolution using 

the dominant PFT) for the MPI-MTE and Jena Inversion.  
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For the two gridded products, which provide a 30 year long time series (1982-2011), the IAV was partitioned in two 

components, namely the variance explained by the temporal trend and that due to annual anomalies (Ahlstrom et al., 2015). 

For this purpose a linear model was fitted on the time series at each pixel, and the determination coefficient of the regression 125 

was used to measure the fraction of variance explained by the trend, whereas its complement to one was the fraction of 

variance due to anomalies.  

The spatial correlation between IAV and climatic drivers (air temperature and precipitation) was analysed at global scale by 

calculating the spatial correlation coefficient between the temporal standard deviation (IAV amplitude) of NEE and the 

average annual temperature or precipitation in moving spatial windows of 15°x11.5° (which means 31x21 pixels for MPI-130 

MTE). The latitudinal averages of these correlation coefficients were calculated for latitudinal bands of 30°. 

Finally, in order to identify which process between photosynthesis and respiration drives IAVNEE, for FLUXNET and MPI-

MTE linear regressions between NEE and GPP or TER were fitted and the difference between the two determination 

coefficients was computed. Since GPP and TER cannot be derived from inversion products, we performed a similar analysis 

using NEE of the Carbon Uptake Period (CUP, sum of negative monthly NEEs) and of the Carbon Release Period (CRP, 135 

sum of positive monthly NEE), as proxies of GPP and TER for all the three data streams. Finally, IAVNEE and IAV controls 

were also analysed in a climatic space defined by mean annual temperature and precipitation. 

3 Results and Discussion 

3.1 IAV patterns 

Figure 1 shows the spatial pattern of inter-annual variability for the three data sets. The IAV of NEE at individual Fluxnet 140 

sites ranges from 15 to 400 gC m
-2

y
-1

 and shows an average of 130 gC m
-2

y
-1

. On average the most northern sites show a 

lower temporal variability both in Europe and in North America (Fig. 1a). A global map of IAVNEE is shown also for MPI-

MTE (Fig. 1b) and Jena Inversion (Fig. 1c) at the original spatial resolutions of the two products. The observed range of IAV 

is similar for the two gridded products and substantially lower than that observed at site level, probably due to the spatial 

averaging of the land fluxes that dampens the temporal variability. The mean global value of IAV is in fact 15 and 20 gC m
-2

 145 

y
-1

 for MPI-MTE and Jena Inversion, respectively, and hence about one sixth of the site level IAV. The two gridded products 

confirm the decreasing trend of IAV toward northern latitudes observed at flux sites. A general decrease of IAVNEE at higher 

latitude for both ENF and DBF was also observed by Yuan et al. (2009) although for none of the two PFTs these trends were 

significant.  

In terms of IAV, the two global products show a reasonable qualitative correspondence for North America and Eurasia, 150 

whereas they disagree for South America, with MPI-MTE showing a minimum of IAV in the humid Tropics, where the 

inversion product shows on the contrary a high variability. MPI-MTE in particular shows maximum values along the Eastern 

coast of South America while the Jena Inversion shows an almost opposite pattern. A similar behaviour is observed also in 

Africa, where the top-down product shows a maximum in central Africa while MPI-MTE shows a minimum in the Congo 

basin and higher values in arid zones like Sahel and South Africa. These discrepancies could, on the one hand, be ascribed to 155 

the limits of the bottom-up approach in dealing with the low seasonality of the fraction of absorbed radiation (FaPAR) in 

evergreen broadleaf forests, given the relevance of this predictor in the MPI-MTE estimates. A second reason for the 

discrepancy could be due to the CO2 emissions from land use change that is particular relevant in some tropical areas but are 

not accounted in the MPI-MTE estimates. On the other hand, the fine-scale estimates of the inversion are largely determined 

by the a-priori weighting pattern, which has been chosen proportional to time-mean NPP (from the LPJ model) as a 160 

vegetation proxy (Rödenbeck et al., 2003). As the atmospheric data can only constrain larger-scale patterns comparable to 

the distances between the stations, this means that IAV will be locally higher where mean NPP is high, and vice versa. 
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As far as the Northern Hemisphere is concerned, a good correspondence is observed in western Eurasia, while some 

discrepancies are observed in other zones; for example MPI-MTE shows a large IAV in India, probably driven by the 

changes in FaPAR related to agricultural intensification, which is not emerging from the inversion product that has little 165 

observational constraint in this area. To summarize, the spatial pattern of IAV in the two products better agrees in the 

Northern Hemisphere for temperate and cold temperate zones, whereas for the southern Hemisphere, and in particular for the 

humid evergreen forests, they show a poor match. In general it has to be considered that both the MPI-MTE product and the 

Jena inversion are driven by data from surface networks that are very sparse in the Tropics and Southern Hemisphere and, 

therefore, these observation-driven estimates are under-constrained in those areas. The results presented in the maps of 170 

Figure 1 are summarized in the climate space in Figure 2. Map pixels were classified according to mean annual temperature 

and precipitation, and the mean value of IAVNEE and normalized IAVNEE were calculated for each climate bin.  

Given that the standard deviation of NEE increases with the primary productivity at the Fluxnet sites (Figure 3), we 

normalized IAV of both MPI-MTE and Jena inversion by the average GPP of the specific climate bin from the MPI-MTE. 

The normalized IAV shows a decreasing trend at increasing temperature and precipitation, which means that arid ecosystems 175 

show a higher variability in both data products, in accordance with previous findings (Ahlstrom et al., 2015). In terms of 

absolute IAV, MPI-MTE shows the highest IAV at high temperature and intermediate precipitation levels, whereas Jena 

Inversion has its maximum in warm humid classes.  

The dependency of IAVNEE on GPP and on NEECUP is reported in Figure 3 for the three datasets. Both for Fluxnet and the 

Jena Inversion, IAV is positively related to either GPP or NEECUP. On the contrary, the IAVNEE in the MPI-MTE dataset 180 

peaks at intermediate values of GPP and NEECUP, even if this trend is not evident in the Fluxnet data from which the MPI-

MTE product is derived. As stressed previously, this latter product seems to underestimate the temporal variability of 

evergreen tropical forests both in South America and Africa, where the highest values of GPP and NEECUP are observed and 

where on the contrary the inversion shows high values of IAV. 

Figure 4 shows the dependence of IAVNEE on the spatial resolution of the analysis for both global products (i.e. MPI-MTE 185 

and Jena Inversion) to verify if and to which extend the spatial scale is responsible for the differences observed between 

them. The two products show a good agreement at the native Inversion resolution (5°x3.75°) and at global level when only 

one global value is retrieved, spatially averaging all the pixels of the original maps. For the MPI-MTE product, the observed 

IAV is decreasing regularly at decreasing map resolution. On the contrary, the Jena Inversion shows a rapid descent followed 

by a stabilisation, probably due to a larger spatial coherence of the inversion signal compared to the MTE product.  190 

The fractions of IAVNEE generated either by temporal trends or by annual anomalies are summarized in Fig. 5 for the two 

global gridded products. For MPI-MTE, more than 80% of the IAV is explained by anomalies at all latitudes. Only in limited 

zones like Congo and Western Amazonia, MPI-MTE shows a relative minimum in the importance of anomalies, but this 

global product might underestimate the total variability in these zones (see Fig. 1b). Anomalies explain the largest share 

(between 62 and 90%, average 77%) of the temporal variability also in the Jena Inversion, with a higher relevance of trends 195 

in the southern hemisphere. The inversion product shows several hotspots of trend-driven variability, like south Africa, south 

America and northern Eurasia that is indeed reported as an area or increasing productivity in the last decades. In the 

interpretation of these results it is important to consider that MPI-MTE is generated by the statistical upscaling of Fluxnet 

data, using climate and FaPAR as predictors. This methodology relies on the assumption of a constant ecosystem response to 

climate drivers and for this reason the product cannot reproduce the influence of environmental factors (e.g. increasing CO2 200 

concentration or nitrogen deposition) that alter these responses but are not reflected in input variables like FaPAR. On the 

contrary, inversion products do not make any assumption on the climate dependence of ecosystem functioning, but include 

also emission from land management and land use change that may hide or emphasize the NEE trends. In summary, it is 

important to notice that, despite the important climate trends, in the last 30 years the temporal variability of the land carbon 
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balance has been driven by annual anomalies, confirming the dominant role of climate variability on the terrestrial C budget 205 

(Le Quéré et al., 2014).  

For the two gridded products the analysis of IAV (either in terms of absolute IAVNEE or normalized with NEECUP) was 

disaggregated by plant functional type (Figure 6). The analysis in terms of absolute IAVNEE shows that savannas and woody 

savannas (WSAV-SAV) are the PFTs characterized by the larger IAV and variability within the PFT. This was found both 

for the MPI-MTE and the Jena Inversion product and confirms the results of a recent study (Ahlstrom et al., 2015) in which 210 

semi-arid ecosystems were found to account for the largest fraction (39%) of the global IAV in net biome productivity. This 

variability was found to be significantly related to the length of the growing season (Ma et al., 2007). In terms of normalized 

IAV the two gridded products show different behaviours, CSH-OSH being the most variable PFT for MPI-MTE while the 

inversion data report a higher variability for EBF and WSAV-SAV. As observed at pixel scale in Figure 1, even at PFT level 

the results obtained from Fluxnet sites show a higher variability than the gridded products. In general at Fluxnet sites IAV is 215 

proportional to ecosystem productivity (Fig 4) with the maximum values observed in EBF, DBF-MF and CRO-GRA and the 

minimum in WET. The large value of IAV observed in GRA-CRO is presumably also affected by the potential large impact 

of management in these ecosystems that can either reduce (e.g. by irrigation) or increase the climate-induced variability (e.g. 

by changing crops or fertilization schemes, etc.). 

3.2 Climate dependence of IAV 220 

The climatic dependence of the spatial variability of IAVNEE at global scale for the MPI-MTE product (Figure 7) shows a 

clear pattern with positive correlations in temperature-limited areas at northern latitudes, and negative temperature 

dependence in water-limited zones (Braswell et al., 1997). These observations agree with Reichstein et al. (2007), which 

report that GPP shifts from soil water content to air temperature dependency at around 52° N. These opposite temperature 

dependences will probably lead to future contrasting changes in IAV. In fact, under a global warming scenario, the northern 225 

latitudes will be characterized by a larger sink (Zhao and Running, 2010) but also by a larger temporal variability, while arid 

zones like the Mediterranean basin, the Middle East Australia and the Sub-Saharan Africa will probably experience a 

reduction in IAV linked to large-scale droughts and consequent reduction in primary productivity (Ciais et al., 2005). 

Concerning precipitation the MPI-MTE product show more complex spatial patterns with negative correlation in the humid 

tropics, temperate Europe and South-East USA and positive correlation elsewhere.  230 

The climate dependencies of IAV are further separated between the variability due to trends and anomalies (Fig. 8, Fig. 2). 

The two components of IAVNEE mostly show an agreement in the sign of the climatic controls, meaning that the 

environmental drivers have the same effects on trends and anomalies, and therefore support the use of IAV to investigate 

long term climatic responses. An exception to this pattern is represented by the correlation with precipitation retrieved from 

MPI-MTE, which shows an unclear latitudinal pattern. In general anomalies show a higher correlation than trends, probably 235 

due to the larger magnitude of the variance attributed to this component. In conclusion, the spatial patterns shown in the 

maps of Fig. 7 and the agreement between the two components of IAV reported in the barplots indicate that the temperature 

controls of IAV of NEE is in general the same as for the primary productivity (i.e. positive in colder biomes and negative in 

warmer regions), while the contrasting results observed for precipitation suggest that the role played by water availability on 

the spatial and temporal variability is unclear, probably because of the temporal correlation between precipitation and 240 

temperature anomalies, as shows by Jung et al. (2017). The analysis of the climate drivers of IAV was not performed for the 

Jena inversion because for this product local variation in IAV are heavily driven by the prior estimates of NPP and therefore 

results have limited sensitivity to the atmospheric constraints. 
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3.3 Physiological drivers of IAV 

An improvement in the mechanistic understanding of IAVNEE can be achieved by partitioning the net flux in its two 245 

components: GPP and TER. Partitioned fluxes are available for Fluxnet sites and for derived products like MPI-MTE, while 

they cannot be derived from atmospheric inversions. For this latter product the fluxes during the Carbon Uptake Period 

(CUP; NEE<0) and during the Carbon Release Period (CRP; NEE>0) were used in this analysis as proxies of GPP and TER, 

respectively.  

To investigate how good this proxy is, the ratios TER/GPP during CUP and GPP/TER during CRP were analysed at Fluxnet 250 

sites and for each pixel of the MPI-MTE product and averaged by PFT (Figure 8a). As far as the MPI-MTE product is 

concerned, TER ranges from 55 to 78% of GPP during the CUP while GPP is 56 to 80% of TER during the CRP, hence on 

average about two-thirds of the signal come from GPP (TER) in the CUP (CRP). These ratios show a certain variability 

among PFTs, with ENF having the larger imbalance between the two fluxes and the lowest ratio TER/GPP during CUP (due 

to the strong seasonality of GPP in this PFT), while the two fluxes are not so well partitioned for EBFs (ratio ~0.8) that are 255 

characterized by a long growing season with consistently large fluxes of GPP and TER. The other PFTs show an average 

ratio value of ~0.65 both in CUP and CRP. In summary, it can be inferred that NEE during CUP is dominated by the signal 

of GPP, while NEE during CRP is dominated by TER even though to a smaller extent, as it emerges from the frequency 

distributions in Figure 8bc calculated from the MPI-MTE product. The distribution of the ratio TER/GPP during the CUP is 

in fact narrower and peaks at a value of 0.7, while a broader distribution is observed for the GPP/TER ratio during the CRP. 260 

As expected there is a larger spread in the composition of NEE during CRP across the World, and this is linked to the larger 

variability in the seasonality of GPP that may actually go to zero in the dormancy season, while TER is always positive.  

In order to identify which of the gross fluxes controls the variability of the net land flux, linear regressions were fitted on the 

NEE time series of each pixel/site against GPP or TER and CUP or CRP. The difference between the variance explained by 

the two flux components (difference of the determination coefficients of the two regressions, where statistically significant) 265 

was used to determine which component (GPP vs TER or NEECUP vs NEECRP) drives the inter-annual variation of NEE. 

Figure 9a shows that, in most of the land area, the IAVNEE is driven by GPP both at Fluxnet sites and for the MPI-MTE 

product. The same data products show an even clearer dominance of NEECUP in the IAV (Fig. 9b). The Jena Inversion 

product shows that, although most of the globe is NEECUP driven, there are quite a few areas that are weakly CRP driven like 

eastern US, arid regions in Africa and the Amazon basin, probably because these areas are estimated to be CO2 sources in 270 

this inversion and therefore NEE is dominated by NEECRP (data not shown). When latitudinal profiles are considered, all the 

products show that GPP and NEECUP dominate the temporal variability of yearly NEE more than TER or NEECRP (le Maire 

et al., 2010). Results shown in the global maps of Figure 9 are represented in the climatic space in Figure 10. Map pixels 

were classified according to mean annual temperature and precipitation. For each climate bin the difference between the 

determination coefficients for NEE vs GPP and TER is reported. Across the whole climate space, IAV retrieved from the 275 

MPI-MTE product is mostly controlled by CUP and GPP, although the difference in R
2
 in the case of GPP and TER is low. 

The Jena Inversion on the contrary show climate areas where IAV is CRP driven, especially in intermediate-high 

temperature classes. Similar results have been reported across several PFT by Yuan et al., (2009) and Ahlstrom et al. (2015) 

using Fluxnet site data and MTE products. A higher correlation of IAV with GPP rather than with TER in deciduous forests 

has been reported also by Barr et al. (2002) and Wu et al. (2012). These results suggest that ecosystem fluxes during the 280 

CUP, and in particular photosynthesis more than respiration, are consistently controlling the inter-annual variability of NEE 

at all the spatial scales for both "bottom-up" and "top-down" data products (Janssens et al., 2001; Luyssaert et al., 2007; le 

Maire et al., 2010; Urbanski et al., 2007; Wohlfahrt et al., 2008a; Wu et al., 2012; Yuan et al., 2009). Temporal variations of 

photosynthesis and of ecosystem exchange during the carbon uptake period are therefore key to interpret the short-term 

climate sensitivity of the global carbon cycle. 285 
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4 Conclusions 

Patterns and controls of the inter-annual variability of Carbon net ecosystem exchange have been investigated using three 

different datasets: ecosystem-level data from the FLUXNET database, the MPI-MTE bottom-up statistical upscaling of 

surface fluxes, and a top-down product based on atmospheric concentration data (Jena CarboScope CO2 inversion). 

The global average of site level IAVNEE (~130 gC m
-2

y
-1

), computed as the standard deviation of annual NEE, was observed 290 

to be almost 6 times the values calculated from the two global products (15 and 20 gC m
-2

 y
-1 

for MPI-MTE and Jena 

Inversion, respectively). This difference is probably due to the large variability in the spatial scale of point level and gridded 

products, combined with the scale dependence of the IAV signal, as shown in Fig 4 for the gridded products.  

All datasets exhibited smaller IAV at higher latitudes, whereas arid ecosystems showed the largest IAV in the global 

products. Temperature has the highest correlation with the spatial patterns of IAV, with a positive control at temperature-295 

limited northern ecosystems and a negative control in water-limited zones. Further insights in the sources of IAV have been 

achieved by exploring the temporal variability of the two gross components: GPP and TER. NEE fluxes during the carbon 

uptake and carbon release period were used as proxies of GPP and TER, respectively, since the partitioned fluxes were not 

available for the Jena Inversion. In all three datasets, GPP and NEECUP, respectively, were shown to control consistently the 

inter-annual variability NEE across geographical and climate domains, highlighting the fundamental role of photosynthesis 300 

in driving the temporal fluctuation of the land sink. 
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Figure 1: Spatial distribution of NEE standard deviation used as a measure of inter-annual variability (IAVNEE). Results are 

reported for a) Fluxnet sites with at least 5 years of observations, b) for the MPI-MTE NEE product and c) Jena Inversion product 485 
s81_v3.6. 
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Figure 2: IAVNEE (left panels) and normalized IAVNEE (CVNEE, right panels) plotted in a Temperature-Precipitation space, for 

MPI-MTE (top panels) and Jena Inversion (bottom panels). Dots represent Fluxnet site values. 490 
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 495 

Figure 3: Dependency of standard deviation of NEE on GPP and NEECUP . Results are reported for Fluxnet sites (red dots, 

different y scale on the right), for the MPI-MTE NEE (black dots) and Jena Inversion product (green dots) 
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 500 

 

Figure 4: Dependence of IAVNEE on map resolution for MPI-MTE (black dots) and Jena Inversion (red dots). Error bars represent 

the 25% and 75% quantiles of the IAV in the aggregated pixels. 
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 505 

 

Figure 5: Maps of the fraction of NEE variance explained by temporal trends and anomalies for MPI-MTE NEE and Jena 

Inversion; latitudinal band (15°) averages of the fractions are reported in the bar plots. 
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Figure 6: Boxplot of NEE standard deviation averaged in PFT classes for MPI-MTE NEE and Jena Inversion, green dots 

represent observations at Fluxnet sites (different y scale on the right). 
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Figure 7: Climatic drivers of the spatial variability of NEE standard deviation. The left panels show maps of the spatial correlation 520 
coefficients (within moving spatial windows of 15°x11.5°) of interannual NEE amplitude versus time-mean temperature and 

precipitation for the bottom up product MPI-MTE. Pixels with non-significant correlation are left white. The barplots on the right 

show latitudinal averages of the correlation coefficients of NEE trend and anomalies versus temperature and precipitation. 
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Figure 8: Bar plot of the ratio TER/GPP for the Carbon Uptake Period (CUP) and of the ratio GPP/TER during the Carbon 

Release Period (CRP), these values were calculated for the MPI-MTE product, dots refer to Fluxnet sites. Averages of yearly 530 
values are represented together with their standard deviation. The global frequency distributions of the ratios obtained from the 

MPI-MTE product are reported in the histograms at the bottom. 
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 535 

 

Figure 9: Control on IAV by GPP-TER and Carbon Uptake Period (CUP) - Carbon Release Period (CRP), expressed as the 

difference of the determination coefficients for Fluxnet sites with at least 5 years of observations (dots), MPI-MTE NEE and Jena 

Inversion. Latitudinal averages are reported for latitudinal classes of 15 degrees. Inset maps show an enlarged plot of Europe. 
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Figure 10: Control on IAV by GPP-TER and Carbon Uptake Period (CUP) - Carbon Release Period (CRP), expressed as the 

difference of the determination coefficients plotted in a Temperature Precipitation space. The two top panels refers to MPI-MTE 545 
while the bottom panel to Jena Inversion, dots refer to Fluxnet sites. 
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